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This paper presents the first infinite-series solutions to the creeping-flow equations 
for the axisymmetric motion of a sphere of arbitrary size towards an orifice whose 
diameter is either larger or smaller than the sphere. To obtain the solution the flow 
field is partitioned in the plane of the opening, and for the flow to the left and right of 
the fluid interface separate solutions are developed that satisfy the viscous-flow 
boundary conditions in each region and unknown functions for the axial and radial 
velocity components in the plane of the opening. The continuity of the fluid stress 
tensor at the matching interface leadsato a set of dual integral equations which are 
solved analytically to determine the unknown functions for the velocity components 
in the matching plane. A boundary collocation technique is used to satisfy the no-slip 
boundary conditions on the surface of the sphere. 

The accuracy and convergence of the present solution is tested by detailed numerical 
comparison with the exact bipolar co-ordinate solutions of Brenner (1961) for the 
drag on a sphere translating perpendicular to an infinite plane wall up to a distance 
of 0.1 sphere radii and is found to be in agreement to five significant digits. The 
converged-series collocation solutions are presented for the sphere in motion in 
quiescent fluid or for flow past a rigidly held sphere positioned axisymmetrically 
near a fixed orifice. Solutions are also presented for the zero-drag velocity of a neutrally 
buoyant sphere in a flow through an orifice, and the pressure-volume flow relation 
for a ball-valve geometry. 

1. Introduction 
It is well recognized that the creeping motion of a spherical particle a t  finite 

distances from a boundary or orifice can require a very substantial correction to 
Stokes’ law for the resistance of a sphere moving in an unbounded fluid. These 
corrections are particularly important when the sphere-wall spacing is of the order of 
five sphere diameters or less, where the weak-interaction method of reflection theory 
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breaks down (see Ganatos, Weinbaum & Pfeffer 1980). All previous exact solutions 
for bounded flows of a sphere have involved infinite planar or cylindrical surfaces 
(Haberman & Sayre 1968; Brenner 1961; Goldman, Cox & Brenner, 1967a, b). More 
recently, Davis, O’Neill & Brenner (1981) obtained first-order expressions for the 
effect of an orifice in a plane wall upon the hydrodynamic force and torque acting on 
a stokeslet or rotlet situated along the axis of the orifice. In  this paper we shall 
consider the on-axis motion of a finite sphere that is either smaller or larger than the 
orifice opening. Highly accurate series-truncation solutions are presented for the 
motion of a sphere in quiescent fluid, the flow past a fixed sphere, the motion of a 
neutrally buoyant sphere, and the pressure-volume flow relationship for the flow 
through the orifice that are valid up to the point where the sphere is tangent to the 
plane of the orifice. A companion paper for the complementary geometry, a sphere 
situated coaxially in the stagnation region near a finite disk, is currently under 
review. Both problems are of intrinsic mathematical interest because of their role in 
the theory of mixed-boundary-value problems. The problem is further complicated 
by the absence of a natural co-ordinate system that can be used to satisfy the no-slip 
boundary conditions simultaneously on the di&ontinuous planar boundary and on 
the sphere. The creeping motion of a sphere near an infinite planar boundary, on the 
other hand, can be treated as a special case of the spherical bipolar co-ordinate system 
in which the infinite plane is taken as a sphere of infinitely large radius. The use of this 
co-ordinate system allowed Brenner (1961) and Goldman et al. (1967a, b) to obtain 
exact solutions for the motion of a sphere perpendicular and parallel to an infinite 
plane wall. 

The motion of a sphere approaching an orifice is of interest in a variety of biological 
and non-biological phenomena. Some biological applications include molecular- 
sieving effects at the entrance to pores in biological membranes, the filling of open 
attached plasmalemma vesicles with plasma proteins and the entrance effects that 
result when micron-sized particles, such as red cells, enter a narrow tube from a feed 
reservoir (Fahraeus & Lindqvist 1931). An important non-biological application is 
the nuclepore filter. All existing theoretical solution studies of the nuclepore filter 
have neglected the boundary conditions on the surface of the particle and hence have 
omitted the effect of the particle on the local flow a t  the pore entrance. Another 
application is the operation of a ball valve at low Reynolds number. 

To treat theoretically the motion of a sphere towards an orifice we have divided the 
flow field into two simply bounded regions: the half-space containing the sphere and 
bounded by the orifice wall, and the remaining infinite half-space. This partitioning of 
the flow field establishes well-defined regions in which the solution for the velocity 
distribution can be obtained in terms of the unknown velocity profile a t  the orifice 
opening. Different stream-function representations are chosen for each region and are 
matched analytically a t  the orifice opening to secure continuity of the kinematic and 
dynamic fields. The no-slip boundary conditions on the surface of the sphere can be 
satisfied by making use of the collocation technique described in detail in Ganatos, 
Pfeffer & Weinbaum (1  978). A successful application of the collocation technique 
depends primarily on the feasibility of representing by a suitable integral transform 
the disturbances generated by the sphere and felt on the confining boundary. The 
inversion of this integral transform, which can be mathematically difficult, has to be 
performed analytically in order to reduce computation time to acceptable limits. 
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The combined analytical-numerical solution procedure used in this problem is an 
important extension of the collocation theory first developed by Gluckman, Pfeffer & 
Weinbaum (197 1)  for unbounded axisymmetric multisphere Stokes flow. The tech- 
nique has also been applied to axisymmetric flows with infinite cylindrical boundaries 
by Leichtberg, Pfeffer & Weinbaum (1976) for the coaxial creeping motion of finite 
clusters of spheres in a tube and recently extended to fully three-dimensional bounded 
motions by Ganatos, Weinbaum & Pfeffer (1980; also Ganatos, Pfeffer & Weinbaum 
1980) for the arbitrary motion of a sphere between plane-parallel boundaries. The 
method of solution used in the present study is the fist to incorporate the collocation 
method in a partitioned flow field with discontinuous planar boundaries. 

In  view of the linearity of the governing differential equations and the boundary 
conditions, the axisymmetric motion of a neutrally buoyant sphere towards an orifice 
can be decomposed into two separate contributions: (i) a translational motion of a 
sphere in quiescent fluid, and (ii) flow through an orifice past a stationary sphere. The 
paper is presented in six sections. Section 2 contains the mathematical formulation 
of the problem. In $3, solutions for the motion of a sphere in a quiescent fluid are 
presented. The case of flow through an orifice past a stationary sphere is described in 
$ 4. In  $ 5, results for the pressure drop across the orifice are presented. In $ 6 the two 
cases are superposed to determine the motion of a neutrally buoyant sphere towards 
the orifice. 

2. Mathematical formulation 
The flow field under consideration consists of a solid sphere of radius a' moving 

axially with an instantaneous velocity V' in viscous fluid towards an orifice of radius b' 
in a wall of zero thickness whose distance from the sphere is d'. The origin of co- 
ordinates is chosen at the sphere centre. The proposed theory is valid up to the point 
where the sphere is tangent to the plane of the orifice. Before presenting the equations 
of motion it is convenient to non-dimensionalize the co-ordinates (unprimed) in terms 
of the dimensional (primed) co-ordinates (figure l),  as follows: 

(2.la,  b )  

such that the dimensionless sphere radius and its distance from the orifice are 
respectively 

(2.2a, b) 

The stream function v, the drag force F', and the pressure P', are expressed in 
dimensionless form using the fluid density p ,  the kinematic viscosity v and the charac- 
teristic length b' as follows: 

a' a' 
b' ' b l >  a = -  

The governing equations for the fluid motion are 

(2.3a, b, c) 

v2u = V P ,  v.u = 0, (2.4a, b )  
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FIGURE 1. Geometry for the problem of a sphere translating axisymmetrically 
towards an orifice. 

where V is the gradient operator in dimensionless co-ordinates. Owing to the axi- 
symmetric nature of the flow, the stream function can be introduced, and is given in 
cylindrical co-ordinates : 

(2 .5a,  b )  

where uR and u, are the radial and axial velocity components respectively. Taking the 
curl of (2.4) and using the definition of the stream function (2 .5 )  yields the fourth-order 
equation 

where D2 is the generalized axisymmetric Stokesian operator given by 

D2(D2$) = 0, (2.6)  

As discussed in $1, we partition the flow field into two regions, the half-space 
containing the sphere, z Q d, and the infinite half-space, z 2 d .  The essential mathe- 
matical problem is to match kinematically and dynamically the solution in each 
region at the orifice opening. 

The stream function for the region z < d is linearly composed of two parts: 

$1 = $w+$s. (2 .8)  

Here $w is a solution of (2 .6)  in cylindrical co-ordinates that represents the disturb- 
ances generated by the orifice and the wall approaching the plane z = d from the left 
and which yields finite velocities everywhere for z < d. $w is given by a Fourier-Bessel 
integral : 

$w = 1; R J , ( ~ R )  [A,(O) + z ~ , ( w ) l  euzdw (z < d ) ,  (2.9) 

where A,(@) and Bl(o) are unknown functions of w ,  and J1 is the ordinary Bessel 
function of the first kind of order 1. 
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The second part of +I, denoted by +8, is an infinite series representing the disturb- 
ance generated by the sphere. +* is given by all the simply separable solutions of 
(2.6) in spherical co-ordinates that yield a finite velocity everywhere. This series is 
given by Sampson (1891) as 

m 

+8= x (B,r-,+l+D n r-n+s ) I n ( t )  (2 6 d).  (2.10) 
f l = 8  

Here r and 8 are the spherical co-ordinates shown in figure 1, = cos 8, and I, is the 
Gegenbauer function of the first kind of order n and degree - 4. B, and D, are un- 
known constant coefficients to be determined by satisfying the no-slip boundary 
conditions on the sphere. 

For the infinite half-space z 2 d, it  is sufficient to represent all disturbancesgenerated 
at the plane z = d by a Fourier-Bessel integral of the form given by (2.9), which yields 
finite velocity as z approaches infinity: 

(2.11) 

Here A,(@) and B,(o) are unknown functions of w. 
To help the reader follow the mathematical development, we give below a, brief 

conceptual summary of the solution procedure to determine the unknown coefficients. 
In  each region the no-slip boundary conditions are first satisfied along the orifice 

wall. This permits the unknown functions A,(@) and B,(w) to be determined in terms 
of the spherical coefficients B, and D, and the unknown velocity at  the orifice opening. 
Similarly, A,(@) and B2(w) can be determined in terms of the unknown velocity at the 
orifice plane. Then, by matching the stress tensor at the opening of the orifice, the 
unknown orifice velocity can be obtained in terms of the spherical coefficients. This 
matching assures that the disturbances produced by the sphere for all values of B, 
and D, are cancelled along the boundary of z = d approaching the orifice wall from 
both the left and right. Finally, the cancellation of the disturbances generated on the 
surface of the sphere by the orifice wall will be accomplished by applying the collo- 
cation method. The solution of the collocation matrix provides numerical values for the 
coefficients B, and D,. 

In  order to apply the no-slip boundary conditions along the wall of the plane of the 
orifice it is necessary to write the spherical-disturbance equation (2.8) in cylindrical 
co-ordinates. Therefore, the spherical co-ordinate system ( r ,8 )  has to be related to 
the cylindrical co-ordinate system (R, z) .  From figure 1, the co-ordinate transformation 
is given by 

r = (R2+9)*, 8 = arccos [z(B*+z2)--f]. (2.12) 

Differentiation of (2.8) according to (2.6) utilizing the properties of the Gegenbauer 
and Legendre polynomials and the chain rule, yields the expressions for the radial 
and axial velocity components for the half-space z < d :  

m & =  ---_- "I - I: ki (o ,  z )  oJl(wR) do+ E [B,BA(R, z )  + D,DA(R, z) ] ,  
R 8z n = 2  

(2 .134  
m 

UZ =A!!!? = ~ o m k ; ( o , ~ ) d , ( o R ) d o +  x [ B , B ~ ( R , z ) + D , D ~ ( R , z ) ] ,  . 
R aR n - 2  

(2.13 b )  
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( 2 . 1 4 ~ )  

(2.14b) 

(2.14e) 

and Pn are Legendre polynomials of order n. Similarly, for the region z 2 d, the 
velocity components are obtained by differentiation of (2.11), and are given by 

where 

( 2 . 1 5 ~ )  

(2.15 b )  

( 2 . 1 6 ~ )  

G(o, z) = [A,(w) + zB,(w)] e-wz. (2.16b) 

The no-slip boundary conditions along the wall of the orifice can now be applied, 
provided that the velocity at the orifice is prescribed. This velocity can be defined as 
follows : 

(2.17) 

where f ( R ) / R  and -g(R)/R are the unknown axial and radial velocity components at 
the opening respectively. From the definition (2.17) the no-slip boundary conditions 
on the orifice wall are [i = I, 111 

1 
u ( R , d )  =-,[f(R)IZ-q(R)F] (0  G R < I), 

(2.18 b )  

In  addition, the stress tensor has to be matched along the interface between the two 

~ $ j ( R , d )  = ~ $ i ( R , d )  (0  < R < I ) ,  (2.19) 

Following the solution summary given previously, we now need to determine the 

regions; this dynamic boundary condition is 

where ri, is the stress tensor. 

Fourier coefficients A,(@),  B,(w), i = 1,2.  
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Application of the kinematic boundary conditions (2.18) along the wall in the half- 
space containing the sphere results in 

Pm m 

J -- k;(w, d )  wJ,(wR) dw = 2 [BnB;(R, d )  + D,DA(R, d ) ]  -CT(R), (2.20a) 
0 n = 2  

m 

n - 2  
~ ~ k ; ( w , d ) o J o ( w R ) d w  = - x [B,Bi(R,d)+D,Di(R,d)]+F(R).  (2.20b) 

The right-hand side in (2.20) represents the disturbance generated by the sphere and 
the orifice opening which must be cancelled on the orifice wall. The unknown functions 
k; and k; in (2.20) evaluated a t  z = d, are simply Hankel transforms of these disturb- 
ances. Inversion of these equations gives 

roo m r i  

(2.21b) 

The evaluation of the integrals in (2.21) and the determination of the functions 
k;(o,  z) and k;(w, z )  are shown in the appendix (equations (A 1)-(A 8 ) ) .  Substituting 
these results into (2.13) and integrating the series provides the expressions for the 
radial and axial velocity components valid for z < d in the form 

J: k l (w ,d )  = -J x [B,Bi(t, d)+D,Di( t ,d)] tJ , (wt)dt+ f(t)J&t)dt.  
m c o  

0 n = 2  

( 2 . 2 2 ~ )  

(2.22 b )  

where 
/3p, Z) = B;(R, Z )  - B;(R, 2d - Z )  + 2(d -2) (n + 1 )  B;+,(R, 2d - z ) ,  

2 
6;(R, z) = DA(R, z) - Dk(R, 2d - 2) - - (n - 1) (n - 3 )  (d - z) BA-,(R, 2d - z )  

n 

(2.23 a) 

+2(2n-3 )d (d - z )B; (R ,2d- z ) ,  (2.233) 

p ; ( ~ , z )  = B ; ( R , ~ ) - B ; ( R ,  2 a - z ) - 2 ( d - z )  (n+ 1 ) ~ ; + , ( ~ , 2 a - ~ ) ,  ( 2 . 2 3 ~ )  

6i(R, z )  = Di(R,  z) -Di(R,  2d -2) + 2 ( n - 2 )  (d-z)B;-,(R, 2d-2) 

- 2( 2n - 3 )  d(d - z) Bi(R, 2d - z). (2 .233)  

Although the velocities in (2.22) are still expressed in terms of the unknown spherical 
coeficients B, and D,, and the two unknown functions f and g, they do vanish on the 
walls of the orifice and can properly represent any arbitrary velocity profile at the 
opening. 
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Following a similar procedure, the no-slip boundary condition (2.18) can be satisfied 
in the infinite half-space z d and the Fourier coefficients A,(w) and B,(w) expressed 
in terms of the unknown functions f and g for the velocity at  the orifice plane. These 
expressions are given in (A 9), (A 10) in the appendix. Substituting these results in 
equations (2.16a, b) one obtains 

f ( t )  Jo(wt) dt + [ 1 - w ( z  - d ) ]  

( 2 . 2 4 ~ )  

k i ( w , z )  = [l +o(z-d) ]  f ( t ) J , ( w t ) d t + w ( z - d )  g(t)J,(wt)dt e-4z-d) .  

(2.243) 

Equations (2.24a, b) together with (2.15), provide the solution for the velocity 
field in the region z 2 d, in terms of the as-yet-unknown velocity a t  the orifice opening. 

The solution obtained for each region is capable of cancelling all disturbances on 
the confining wall. Furthermore, the two solutions are matched kinematically at  the 
opening, since they satisfy the same velocity conditions at z = d. However, the 
solutions have been obtained without accounting for the compatibility of the shear 
stress and the pressure field across the plane of the opening. A unique solution for 
f and g can, therefore, be obtained by matching the normal and tangential com- 
ponents of the stress tensor at  the interface between the two regions. It can be shown 
(Dagan, Weinbaum & Pfeffer 1982) that the dynamic condition of matching the 
stress tensor (2.19) can be satisfied if the pressure and its gradient are matched a t  
z = d .  Namely, 

1 so' 1: I 

aP1 aPI1 
a x  az 

P'(R,d) = P"(R, d ) ,  - (R,  d) = - (R, d ) .  (2.25a, b )  

The general expression for the pressure field in each region can be determined by 
integrating the creeping-motion equations (2.4) with the appropriate stream-function 
representation. For the half-space containing the sphere the resulting equation is 

OD 2n - 3 P,,-,(i$) PI(R,z) = 2 / ~ w ~ 0 ( w R ) B 1 ( o ) e ~ z d w + 2  C Dn- n - rn +em, (2.26) 
n = 2  

and for the infinite half-space z 2 d 

PII(R, z )  = 2/: wJo(wR) B,(w) e-oZdw +P,, (2.27) 

where P-, and P, are the uniform pressures prescribed a t  z-f -a and z+oo respec- 
tively. 

Introducing B,(w) and B,(co) (given in the appendix) into equations (2.26) and 
(2.27), the pressure-matching conditions (2.25) yield the relations 

/omo2Jo(oR) [/: f ( t )Jo(ot)dt  1 dw = P*(R) (0  < R < I) ,  ( 2 . 2 8 ~ )  
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where 

( 2 . 2 9 ~ )  

i c o  +' x D , ( 2 n - 3 ) B ; ( R 7 d ) .  
2n=  a 

(2 .29b)  

B:, B:*, D;f, D$* are given by (A 5 ) ,  and AP is the pressure drop across the orifice, 
defined by 

6 P  = P-,-Pm 2 0.  (2 .30)  

The integral equation (2 .28)  can be solved for the f and g functions as follows. 
Defining the new functions 

and noting that 

/.= [fy) Jo(wR) dw = 0 ( R  > l ) ,  
0 9 (4 

(2 .31b)  

(2.32a7 b )  

one obtains two sets of dual integral equations. Using the definition (2 .31) ,  one finds 
that (2 .28a)  and (2 .32a)  comprise the set for the function f * ( w ) ,  while (2 .283)  and 
(2 .323)  define the second set for g*(w). 

The solution for a dual integral equation of this form is given by Tranter (1951):  

(2.33) 

The right-hand side in (2 .33)  is further simplified (see appendix), and the resulting 
expressions (A 13)  are substituted back into (2 .22) .  After considerable algebraic 
manipulations the velocity components are obtained in the form 

( 2 . 3 4 ~ )  

(2.34 b )  

where x = x -d, and the remaining functions (BE, /3:*, e, 82*, H' and H a )  are defined 
in the appendix. 

The solution for the velocity field (2.34) both satisfies the no-slip boundary conditions 

AP + H"@, 34, 
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on the orifice wall and provides an exact solution for the velocity at the orifice opening. 
This solution still incorporates the unknown coefficients B, and D,, which must be 
determined from the remaining no-slip boundary conditions on the surface of the 
sphere. The definite integrals in (2.34) must be performed numerically with special 
consideration given to the limit as t approaches zero. 

On the surface of the sphere, the solution must satisfy the following no-slip boundary 
conditions : 

UR = 0, ui = v, (2.35 a, b )  

where V is the translatory uniform sphere velocity shown in figure 1. Application of 
these boundary conditions on the surface of the sphere, r = a, is accomplished by 
utilizing the collocation technique first presented by Gluckman et al. (1971), and more 
recently used by Ganatos et al. (1980) for the motion of a sphere perpendicular to two 
plane-parallel walls. 

To satisfy the boundary conditions (2.35) exactly on the surface r = a would require 
the solution of the entire infinite arrays of the unknown spherical coefficients B, and 
0,. Instead, the collocation technique satisfies the boundary conditions a t  a finite 
number of discrete points on the sphere's generating arc and truncates the infinite 
series into a finite one. The two sets of unknown coefficients in each term of the series in 
(2.34) permit one to satisfy the exact no-slip boundary conditions at one discrete point 
on the sphere surface. Thus, if the spherical boundary is approximated by satisfying 
conditions (2.35) at M discrete points on its generating arc, the infinite series in (2.34) 
is truncated after M terms, resulting in a set of 2M simultaneous linear algebraic 
equations which can be solved for the 2M unknown coefficients B, and D, by any 
standard matrix-reduction technique. The accuracy of the truncation technique can 
be improved by increasing the order M of the truncation. Clearly, as M + 00 the trun- 
cation error vanishes and the overall accuracy of the solution depends only on the 
accuracy of the numerical integration required in evaluating the matrix elements. 

The force exerted by the fluid on the sphere is shown in Happel & Brenner (1973, 
p. 115) to be 

(2.36) 

Application of this operator and the orthogonality properties of the Gegenbauer 
function (2.8)-(2.10) results in the simple relation 

P = 4nDZ. (2.37) 

The drag force can be expressed in terms of two drag coefficient factors A@') and 
A(U0). Am describes the case of a sphere translating with velocity V toward the orifice 
along its centre line in an otherwise quiescent fluid ( A P  = 0), and A( uo) describes the 
flow through an orifice past a stationary sphere ( V  = 0) .  

For a sphere moving with velocity V, the drag force can be written as 

(2.38 a)  

(2.383) 

and hence 



Creeping motion of a Jinite sphere 153 

Here A@") represents the ratio of the drag force acting on the sphere in the presence of 
the confining boundary to the force exhibited under the same conditions in unbounded 
fluid. 

I n  the case of flow past a stationary sphere, the drag force is given by 

F = 47rD$uo) = 67raU0A( Uo), 

and hence 
(2.39a) 

(2.39b) 

where U, is the centre-line fluid velocity in the plane of the orifice in the absence of the 
sphere and A(uo) represents the ratio of F to the drag force acting on a stationary 
sphere in an infinite fluid of uniform velocity U,. 

In  the general owe, where both the fluid and the sphere are in motion, the linearity 
of the equation allows one to write the net drag force as the sum of the forces discussed 
above, i.e. 

F = 4nD2 = 47r[D20 + D$Uo)], (2.40a) 

P = 6 4  VAm + U, A( u ~ ) ] .  (2.40 b )  

3. Solutions for the axisymmetric motion of a sphere towards an orifice in 
quiescent fluid 

The solutions for the motion of a sphere towards an orifice through an otherwise 
quiescent fluid will be presented in this section together with a detailed description of 
the convergence characteristics of the collocation technique. The results obtained by 
the present method for the limiting case as a+m will be compared with the exact 
sohtion of Brenner (1961) for translation of a sphere perpendicular to a plane wall. 

The system of linear algebraic equations to be solved for B, and D, is constructed 
from (2.34) and the boundary conditions (2.35) with A P  = 0. When the sphere is 
moving toward a solid wall (b' = 0, a + a )  the system is easily modified by using 
(2.22) with f ( R )  = 0 and g(R) = 0. 

In  general, there are many schemes which may be used to select the boundary 
points on the surface of the sphere to  satisfy the no-slip boundary conditions. Two 
different schemes, which were successfully employed by Leichtberg, Pfeffer t 
Weinbaum (1976) for the problem of flow past a chain of spheres and by Leichtberg, 
Weinbaum, Pfeffer k Gluckman (1976) for two closely spaced adjacent spheres in a 
chain will be examined in detail. 

The most accurate lowest-truncation solution for the drag force is obtained by 
using one boundary point at 8 = &r on the sphere's generating arc. This point is of 
great importance since it defines the projected area of the sphere normal to the 
direction of motion. However, an examination of the system of linear algebraic 
equations shows that for 8 = 47r the coefficient matrix in (2.34) is singular. In  order to 
overcome this difficulty, the top point 8 = irr is replaced by two closely spaced 
adjacent points 8 = &r f 8, where the optimum value of &is determined by considering 
a set of solutions for various sphere-to-pore spacings in which the boundary conditions 
are satisfied onlyat the top two points for decreasing values of 6. Furthermore,in order 
to examine the dependence of 6 on the ratio of sphere-to-pore diameter the solutions 
are computed for three different values of a. Consequently, the largest value of 6 for 
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6' 

(a) a = 1.0 

01 = 0.6, a = 1-0, a = 2.0, a = 3.0, 

d - = 10.1 
d d 

a a a a 
d _  = 1-13 - = 1.54 - = 3.76 

10" - 2.22'72 - 1.9432 - 1,3862 - 1.1247 
1" - 2.2160 - 1.9353 - 1.3855 - 1.1246 
0.l0 -2.2159 - 1.9353 - 1.3856 - 1.1246 
0.01 O - 2.2159 - 1.9353 - 1.3855 - 1.1246 

( b )  a = 10 

a = 0.6, a = 1.0, a = 2.0, a = 3.0, 

8 

10" 
lo 
0*l0 
0.01 

8 

- =  - = 3.76 - -  - 10.1 1.54 

- 3.5647 - 2.6239 - 1.4038 - 1.1249 
- 3.4857 - 2.4988 - 1.4030 - 1.1249 
- 3.4849 - 2.4986 - 1.4030 - 1.1249 
- 3.4849 - 2.4986 - 1.4030 - 1.1249 

d 
a a a a 
d - = 1.13 

0 

( c )  a + 03, b' = 0 

a = 0.6, a = 1.0, a = 2.0, a = 3.0, 

_ -  - 10.1 
d d 

a a a 
- = 3.76 _ -  - 1.54 - =  1-13 

a 

10" - 3.5674 - 2.5251 - 1.4039 - 1.1249 
lo - 3.4885 - 2.5000 - 1.4030 - 1.1249 
0.l0 - 3.4877 - 2.4998 - 1.4030 - 1.1249 
0.Ol0 - 3.4871 - 2.4997 - 1.4030 - 1.1249 
O*0Ol0 - 3.4877 - 2.4997 - 1.4030 - 1.1249 

TABLE 1. Drag-correction factor for a sphere translating axisymmetrically towards an orifice 
in quiescent fluid; M = 2. Convergence test for 8. 

which convergence to five significant figures is obtained was selected. These solutions 
are presented in table 1. The parameter a used in the table is given in terms of the 
ratio of the dimensionless sphere radius a to the dimensionless distance d by the rela- 
tionship a = arcosh (d la ) .  Table 1 indicates that the rate of convergence of the drag 
correction factor A@') is reduced greatly with decreasing a and when b' = 0. Con- 
vergence to five significant figures for all spacings and sphere radii is achieved when 
6 < 0.01". Therefore 6 is chosen as 0.01". 

Additional boundary points are selected as mirror-image pairs about the cross- 
section 0 = &r in order to maintain the geometrical symmetry of the boundary about 
this plane. In  the first scheme tested the boundary points were selected by dividing 
the half-arc into equal segments. That is, for an even order of truncation M, the 
boundary points are defined by ei = i( 180"lM) where i = 1,2, . . . , M - 1, with the top 
point 0 = 90" replaced by the doublet 89.99' and 90.01°. Using this scheme, solutions 
for A@') were obtained for the case of a sphere approaching a solid plane wall (b' = 0), 
for various values of the spacing parameter a, by increasing M until the convergence 
to five significant digits is achieved. The results, presented in table 2, are compared 
with the exact solution of Brenner (1961) and are found to be in perfect agreement for 
the desired accuracy. The rate of convergence is rapid for large values of a and 
deteriorates monotonically as the distance between the sphere and the wall decreases. 
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~ 

M 

2 
4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
* 

a = 0.6, a = 1.0, a = 1-6, a = 2.0, a = 2.6, a = 3.0, 

10.1 - =  1-13 - = 1.64 - = 2-36 - = 3-76 - = 6.13 - = 
a a a a a a 

-3.4877 - 2.4997 - 1.7728 - 1.4030 - 1.2202 - 1.1249 
-8.3669 - 2.9842 - 1.8359 - 1.4128 - 1.2220 - 1.1262 
- 7.8347 - 3.0309 - 1.83'74 - 1.4129 - 1.2220 - 1.1262 
- 8.6423 - 3.0366 - 1.8376 - 1.4129 
- 9.0189 - 3.0360 - 1-8375 
- 9.1693 - 3.0361 
- 9.2237 - 3.0361 
- 9.2424 
- 9.2486 
- 9.2607 
- 9.2614 
- 9.2616 
- 9.2617 
- 9.2618 
- 9-2618 
-9.2618 - 3.0361 - 1.8376 - 1.4129 - 1.2220 - 1.1262 

d d d 

*' Exact solution (Brenner 1961) 

TABLE 2. Convergence of ACT) for a sphere translating perpendicular to 
an infinite plane wall; b' = 0 

A second scheme for selection of boundary points, tested for the same flow condi- 
tions, includes the points 8 = 0 and 6 = n. These points are of great importance when 
the sphere is located adjacent to the wall since they define the gap between the sphere 
and the plane at z = d. As in the case when 8 = &r, the coefficient matrix (2.34) 
becomes singular when 8 = 0 or n. A similar procedure to that used for the 6 = in 
point is employed to overcome this obstacle. Using M = 4 with 8 = 8, in & 8, n - 8, 
solutions are obtained for various values of 8, a and a. The results are presented in 
table 3, indicating clearly that Am converges to five significant figures for all values of 
a and a when 8 < 0.01, with the slowest convergence rate exhibited when b' = 0. 
Selection of additional points is done in pairs as before. An even number of points M 
are given by 8 = (i-1) (18Oo/(M - 2)) where i = 1,2, ..., M-1, and the points 
8 = 0, 90°, 180° are replaced by t9 = 0.01', 89-99', 9O.0lo, 189.99' respectively. Solu- 
tions obtained for a sphere moving perpendicular to a plane wall for various spacings 
are presented in table 4 and compared with the exact solution. The solutions obtained 
by this method converge somewhat faster than those obtained by the previous scheme, 
shown in table 2. A t  the distance of closest approach, a = 0.5, the use of the current 
scheme yields convergence to five significant digits with 24 boundary points, while 
the first scheme achieves the same accuracy with 28 points. In  view of these tests, the 
second scheme is seen to provide more rapid convergence and will therefore be 
used to determine A(v) for various orifice diameters. 

Before presenting these results, the effect of the ratio of the sphere-to-pore diameter 
on the rate of convergence is examined. Since the spherical solution in (2.34) must 
cancel the disturbance generated at the orifice opening as well, the rate of convergence 
is expected to deteriorate as the ratio of sphere-to-orifice diameter increases. Solutions 
were computed for various values of a and d /a  with increasing number of boundary 
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6 

10" 
1" 
0.1" 
0.01" 

8 

10" 
1" 
0.1" 
0.01" 

8 

10" 
1" 
0.1" 
0.01" 
0~001" 

u = 0.5, 

d 
a 
- = 1.13 

- 2.3084 
- 2.3016 
- 2.3015 
- 2.3015 

u = 0.6, 

- 1.13 
d 
a 
- -  

- 3.5654 
- 3.4866 
- 3.4869 
- 3.4859 

u = 0.5, 

- =  1-13 
a 

- 20.434 
- 33.196 
- 33.407 
- 33.409 
- 33.409 

(a) a = 1.0 
a = 1.0, 

d - = 1.54 
a 

- 2.0026 
- 1.9983 
- 1.9983 
- 1.9983 

( b )  a = 10 

a = 1.0, 

- -  - 1.54 
a 

- 2.5240 
- 2.4990 
- 2.4987 
- 2.4987 

(c) a + 00, b' = 0 
a = 1.0, 

- =  1.54 
a 

- 3.1592 
- 3.1948 
- 3.1952 
- 3.1952 
- 3.1952 

a = 2.0, 

d 
- = 3.76 
a 
- 1.3870 
- 1.3864 
- 1.3864 
- 1.3864 

a = 2.0, 

a 
d = 3-76 

- 1.4038 
- 1.4030 
- 1.4030 
- 1.4030 

a = 2.0, 

d - = 3.76 
a 

- 1.4131 
- 1.4132 
- 1.4132 
- 1.4132 - 1.4132 

u = 3.0, 

- =  10.1 
a 
- 1.1247 
- 1.1246 
- 1.1246 
- 1.1246 

u = 3.0, 

- =  10.1 
a 
- 1.1249 
- 1.1249 
- 1.1249 
- 1.1249 

u = 3.0, 

- =  10.1 
a 

- 1.1252 
- 1.1252 
- 1.1252 
- 1.1252 
- 1.1252 

TABLE 3. Drag-correction factor for a sphere translating axisymmetrically towards an orifice 
in quiescent fluid; M = 4. Convergence tests for 8. 

4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
* 

-33.409 -3-1952 - 1.8428 - 1.4132 - 1.2220 - 1.1252 
- 14.902 - 3.0399 - 1.8374 - 1.4129 - 1.2220 - 1.1252 
- 9.8323 - 3.0360 - 1.8375 - 1.4129 
- 9.3260 - 3.0361 - 1.8375 
- 9.2603 - 3.0361 
- 9.2513 
- 9.2510 
- 9.2515 
-9.2517 
-9.2517 
- 9.2518 
- 9.2518 
-9.2518 -3.0361 - 1.8375 - 1-4129 - 1.2220 - 1.1252 

* Exact. solution (Brenner 1961) 

TABLE 4. Convergence of A'") for a sphere translating perpendicular to an 
infinite plane wall with boundary points placed near 8 = 0, 7r;  b' = 0 
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d 
a M a = 0.1 a = 0.5 a = 1-0 
- 

5.0 4 - 1.0632 - 1.2508 - 1.2795 
6 - 1.0532 - 1.2509 - 1.2796 
8 - 1.0532 - 1.2609 - 1.2795 

2.0 6 - 1.0505 - 1.3918 - 1.8066 
8 - 1.0605 - 1.3919 - 1.8058 

10 - 1.0505 - 1.3919 - 1.8058 
1.5 8 - 1.0504 - 1.3882 - 2.0335 

10 - 1.0504 - 1.3882 - 2.0334 
12 - 1.0604 - 1.3882 - 2.0334 

1.1 16 - 1.0504 - 1.3777 - 2.2867 
18 - 1.0504 - 1.3777 - 2.286'7 
20 - 1.0504 - 1.3777 - 2.2867 
22 
24 

28 
30 

- - - 
- - - 
- - - 
- - - ,26 

- - - 

TABLE 5. Convergence of A'") for various sphere radii a 
and sphere-to-orifice spacings d l a  

a = 10 

- 1.2851 
- 1.2851 
- 1.2851 
- 2.1248 
- 2.1248 
- 2.1248 
- 3.1981 
- 3.1983 
- 3.1983 
- 10.593 
- 10.590 
- 10.568 
- 10.543 
- 10.527 
- 10.517 
- 10.512 
- 10.51 1 

1c 

I .a 
h - 
+ 
c 

I 

" e 

0. 

0.0 I I I 
4 I 10 

Spacing dla 

FIGURE 2. Drag on a sphere translating axisymmetrioally towards an orifice. 
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points, starting with the minimum value of 2M from table 4 which yields convergence 
to four significant digits. Examination of these solutions, shown in table 5,  indicates 
that the pore size has little effect on the rate of convergence except when a is large 
and the sphere is adjacent to the orifice. The slow convergence for the case a = 10 and 
&/a = 1.1 is due mainly to the high velocity gradient in the gap between the sphere 
and the wall. This necessitates choosing a high concentration of boundary points on 
the section of the sphere surface closest to the orifice wall. Therefore, for large values 
of a and small values of d/a, when convergence is slow and computation time is 
prohibitively long, the accuracy will be reduced to three significant digits. 

Final results for A@') for various dimensionless sphere radius and sphere-to-wall 
spacings are presented in table 6. The solutions are plotted in figure 2 together with 
the exact solution for the case of motion perpendicular to an infinite plane wall, 
corresponding to the limiting case when a+m. An interesting result, observed in 
figure 2, is that the drag on a sphere whose diameter is smaller than that of the orifice 
decreases when the sphere is close to the orifice, with a relative minimum value at the 
centre of the opening. This effect is due to the decreasing of the effective wall-inter- 
action area that offers resistance to the motion of a 'small sphere' aa it approaches 
the opening. 

4. Solution €or the flow through an orifice past a stationary sphere 
The results for A(U0) for the case of flow into an orifice past a stationary sphere are 

obtained from the solution of the system of linear algebraic equations defined by 
(2.34) and the boundary conditions (2.35) with V = 0. 

The collocation technique is employed in a manner similar to that described in 3. 
The two schemes for selection of boundary points are tested again. The singularity of 
the coefficient matrix at 8 = 0, n is avoided by using the points 8 = in f &for the first 
scheme and 8 = 8, &f8, n-S for the second scheme and taking the limit 8+0 
convergence is achieved to the desired number of digits. Again, convergence to five 
significant digits was achieved for all spacings for 8 < O.0lo. Tables presenting the 
results for these tests are contained in Dagan (1980) and will not be repeated here. In  
order to test the convergence of the first scheme, solutions are computed for a = 1 
and for increasing number of boundary points. Based on the results in § 3, solutions 
were not computed for small values of M, when the results are from the final converged 
value. The procedure was repeated with the second collocation scheme. Comparison 
of the results, presented in tables 7 and 8, shows no major difference between the two 
schemes. This behaviour may be explained by the fact that large fluid velocities can 
be generated in the gap between the sphere and the edge of the orifice rather than in the 
front of the sphere, where the gap between the sphere and the orifice plane is smaller. 
Nevertheless, the second scheme is chosen in further computations for the sake of 
consistency. 

The effect of the ratio of space-to-pore diameter on the rate of convergence was 
tested and is presented in table 9. Examination of these solutions indicates that 
convergence deteriorates for large values of a and small spacing. For a = 10 and d = 1.1 
the results converge to only three significant digits with 30 boundary points. 

Solutions for Z U o )  for various values of a and d / a  are plotted in figure 3 and are 
presented, for reference, in table 10. Figure 3 indicates that for a fixed pressure drop 
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M 

4 
6 
8 

10 
12 
14 
16 
18 
20 

- =  1.1 
a 
- - - - 0.01 1092 
- - 0.327 09 0.048 693 0-01 1 094 
- 0.483 61 0,327 66 0.048 697 0.01 1 094 - 0-483 26 0.327 66 0.048 697 
- 0-483 21 0.327 64 
- 0.483 20 0.327 64 

0.64020 0.483 20 
0.640 18 
0.640 18 

TABLE 7. Convergence of AtUo) for the flow through an orifice past a stationary sphere at 
various sphere-to-orifice spacings d/a; a = 1.0 

4 
6 
8 

10 
12 
14 
16 
18 
20 

- - - - 0.011 102 
- - 0.32639 0.048 691 0.01 1094 
- 0-483 02 0.327 66 0.048 697 0.01 1094 
- 0-483 16 0.327 64 0.048 697 
- 0-483 19 0.327 64 

0.483 20 
0.640 17 0.483 20 
0.640 18 
0.640 18 

- 

TABLE 8. Convergence of #Uo) for the flow through an orifice past a stationary sphere at varioy 
sphere-to-orifice spacings d/a, with boundary points at 8 = 0, n; a = 1.0 

a = 0.5 a = 1.0 

6.0 6 0.83796 0.16985 0.048 691 
8 0.837 96 0.169 86 0.048 697 

10 0.837 96 0.16988 0.048 697 
2.0 6 1.003 6 0.627 66 0.326 39 

8 1.003 6 0-627 19 0.327 66 
10 1.003 6 0.627 20 0.327 64 
12 - 0.627 20 0.327 64 
14 - 0.627 20 0-327 64 
16 

1.6 8 1.020 6 0.77674 0.48302 
10 1.0206 0.77576 0.483 16 
12 1.0206 0.77578 0.483 19 
14 - 0.77676 0.483 20 
16 - - 0.483 20 
18 - - 0.483 20 

1.1 16 1.0310 0.906 71 0.640 17 
18 1.0310 0.905 7 1 0.640 18 
20 1.031 0 O.905 7 1 0.640 18 
22 - - 0-640 18 
24 
26 
28 
30 

M a = 0.1 
d 
a 
- 

- - - 

- - - 
- - - - - - - - - 

TABLE: 9. Convergence of A(W.for various sphere radii a 
and sphere-to-orifice spacings d/a 

a = 10 

O-OOo607 66 
0*000607 74 
0-000607 74 
0.006 767 4 
O.OO6636 1 
0.006 66 1 8 
0.006 664 1 
0.006 664 6 
O.OO6 664 6 
0.018 667 
0.018363 
0.018433 
0.018466 
0.018479 
0.0 18 484 
0.132 61 
0.133 60 
0.13847 
0.14294 
0.146 10 
0- 147 99 
0.14882 
0.14899 
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FIGURE 3. Drag on a rigidly held sphere in flow through an orifice. 

across the orifice the drag force increases with decreasing spacing for all sphere sizes 
and approaches a finite value when the sphere touches the plane of the pore. One 
notes that the drag on the sphere decreases markedly as the sphere size increases for a 
fixed AP.  This is a consequence of the reduction of the volume flow through the orifice 
due to the obstruction of the sphere. The relationship between volume-flow pressure 
drop and sphere size is examined in 5 6. 

5. Pressure drop across the orifice 
The relations between the volumetric flow rate and the pressure drop across the 

orifice, in the presence of a sphere, can be obtained by integrating the axial velocity 
ui over the area of the orifice opening. The integration can be performed analytically 
yielding the expression 
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FIGURE 4. Pressure drop across an orifice for flow past a rigidly held sphere. 
- - - -  , extrapolated results. 
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FIGURE 6. Volumetric flow rate through an orifice due to 
the tramlatory motion of a sphere. 

where Q is the dimensionless volumetric flow rate defined in a similar manner to the 
stream function in (2.3a). 8, is defined by (A 16a) in the appendix and 

cos (n  arccot d )  
(1 + da)+ ' Cn(4 = 

An important application of (6.1) is the operation of a ball valve in the low-Reynolds- 
number regime. In  this application a ball whose dimensions are larger than the orifice 
is constrained from moving by a wire a t  a fixed distance above the orifice. 

Clearly, when the sphere is far from the orifice (d --f 00) (5.1) reduces to 

Q = W', (5.3) 

which is in agreement with the exact solution for flow through an orifice in the absence 
of a sphere. 

The relationship between Q and A P  was computed for the case where the sphere is 
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held rigidly at a prescribed distance from the orifice. These results are presented in 
figure 4 for various sphere diameters.? Examination of these results indicates that the 
volumetric flow rate decreases, for a prescribed pressure drop across the orifice, with 
decreasing spacing. For a sphere of diameter larger than the orifice diameter (a 2 1)  
Q decreases rapidly when d / a  < 2 and approaches zero when the sphere blocks the 
orifice entirely. The results for d / a  < 1.1, when the sphere diameter is larger than that 
of the orifice, are extrapolated and shown by the dashed lines. 

In  the case of a sphere moving with velocity V towards an orifice in quiescent fluid 
(AP = 0 )  the volumetric flow rate at  the pore opening Qo is presented in figure 5.  
Here, Qo increases with increasing sphere size and decreasing distance between the 
sphere and the orifice. 

The total volumetric flow rate through the orifice for the general case when a 
sphere is moving with velocity V and the pressure drop across the orifice is prescribed 
by A P  can be obtained by adding the two distinct contributions given by figures 4 
and 5. 

6. The axisymmetric motion of a sphere in a flow through an orifice 
In  this section, a solution for the velocity of a sphere carried by the fluid toward 

the orifice is presented by combining the axisymmetric solutions for the motion of a 
sphere in a quiescent fluid and the flow through an orifice past a stationary sphere. 

One problem of interest considers a sphere suspended above an orifice in which fluid 
is being pumped against gravity. The flow rate required to keep the sphere stationary 
can be determined by setting V = Oin (2.40) and equating F to the force due to gravity. 
The result is 

where vt is the terminal settling velocity in an infinite medium. 
Another application of interest is the motion of a neutrally buoyant sphere carried 

by the flow toward the pore. In  this case we require a zero drag force on the sphere. 
Equation (2.40) reduces to 

V A(UO) 

ACV) ’ -- 
uo - -- 

from which the local sphere velocity V is obtained. 
Of particular interest is the slip velocity of the neutrally buoyant sphere, defined by 

611, = V -  u, (6.3) 

where U is the local fluid velocity in the absence of the sphere and can be related to 

hence 

or 

U - = (1  +d2)-1. 
UO 9 

( 6 . 5 ~ )  

(6 .5b)  

t Note that in the subsequent figures the abscissa is d and not d/a. The latter choice will show 
the curves too close to each other. 
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FIQURE 6. (a) Velocity of m neutrally buoyant sphere carried by the flow through an orifice; 
a < 1.0. (a) Velocity of a neutrmlly buoyant sphere carried by the flow through an orifica; 
U > 1.0; - - - -, eXtr8POhhd d b .  

Equation (6.66) is plotted in m e s  8(a, b). Figure 8(a) shows the ratio of the 
sphere velocity fo the undisturbed local fluid velocity for spheres with radius a < 1. 
The results indicate that the sphere velocity is smaller than the local fluid velocity. 
These results are compared with the zero-drag velocity of a sphere carried axi- 
symmetrically in an infinite tube (Haberman & Sayre 1968), shown by the arrowheads 
on the ordinate. Clearly, the present results approach this limiting case and it is easy 
to extrapolate the zero-drag velocity for a sphere entering a semi-infinite cylindrical 
pore. In contrast, for spheres larger than the orifice diameter (figure 86) the sphere 
velocity increaaes rapidly as the sphere approaches the orifice and then drops sharply 
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when d/a < 1.25. This behaviour can be explained by the fact that when the gap 
between the sphere and the orifice decreases the fluid velocity rises quickly, enhancing 
the motion of the sphere. With further decrease of the gap width, the blocking of the 
orifice by the sphere reduces the volumetric flow rate (see figure 4), which in turn 
retards the sphere motion. The dashed extensions in figure 6(b) are extrapolated 
results for the sphere velocity for small spacings d/u < 1.1. 

Finally, it may be of interest to compare the slip velocity or the ratio V / U  with 
the approximate result one can readily obtain from the widely used Faxen’s law 
(Happel & Brenner 1973) in the form 

- V = [I+-] 3a3 -1 

U ( 1 + a 2 ) 3  

Clearly, (6.6) cannot describe the behaviour shown in figure 6 ( b ) ,  where V / U  > 1. It 
is valid only for a/d < 1, when the flow field is barely affected by the presence of the 
sphere. For example, when d = 1 and a = 0.1, 0.25, 0.5, 0.75 the errors in using (6.6) 
compared with figure 6(a)  are 0.1, 1.4, 6.1 and 11-4 yo respectively. 

The calculations for the results presented in this paper were performed on an 
AMDAHL470IV6 computer. The bulk of the coniputatior, time was used in the 
numerical integration required for the evaluation of the coefficient matrix. Actual 
computer execution times were found to be approximately +M2 s per run, with 
increasing execution time for small sphere sizes due to slowerevaluation of the integrals 
in (2.34). 

The authors wish to thank the National Science Foundation for supporting this 
research under grant ENG78-22101, and The City University of New York Computer 
Center for the use of their facilities. The above work has been performed in partial 
fulfilment of the requirements for the Ph.D. degree of Z. Dagan from the School of 
Engineering of The City College of The City University of New York. 

Appendix 

$2 are given here. 
For the purpose of conciseness some of the mathematical derivations discussed in 

(a )  Integration of (2.21) and evaluation of k;(w, z )  and P:(w, z )  

The integrals in (2.21) can be performed analytically by making use of the integral 
given by Erdklyi et at?. (1954, vol. 2, p. 45) 

(A 1) 
the Legendre-polynomial representation of the Gegenbauer function given by 

and the recurrence relation for Legendre polynomials. Thus, one can show that 



Utilizing these results in (2.21) yields 

The functions ki and k:, in (A 4 )  and (A 5),  evaluated at x = d, are expressed in 
terms of the unknown coefficients Bn and Dn in the spherical solution, and the unknown 
velocity components f and g at the opening. To obtain the expression for the velocity 
field, the Fourier functions A,(@) and Bl(o)  in the expressions for ki and k; must be 
determined. This is accomplished by evaluating ( 2 . 1 4 ~ )  and (2.14d) a t  z = d and 
equating with (A 4).  The resulting equations are then solved for Al(w) and Bl(w) 
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Equations (A 6) and (A 7) are substituted back into (2.14~~ d),  yielding the following 
results : 

ki(w, z )  = - [w(d - z )  - 13 g(t )  Jl(ot) dt - w(d - z) 

+ 5 ~ , { [ l - w ( d - z ) l ~ : ( o , d ) - o ( d - z ) ~ ~ * ( o , d ) } e - w c d - ~ )  

+ Dn{[l - 0 ( d - z ) ] D ~ ( 0 , d ) - 0 ( d - ~ ) D ~ ~ ( w , d ) } e - w ( ~ - ~ ) ,  (A 8a) 

f ( t )  Jo(wt) dt e-dd-O) 1 so’ so’ 1 

so’ !: 1 1 

n = 2  
m 

n = 2  

k;(w,z)  = [I +o(d-z ) ]  f ( t )Jo(wt)d t -u(d-z )  g(t)J,(wt)dt e-o(d-2) 

W 

- I: B,{w(d-z)B:(w,d)+ [I + 0 ( d - z ) ] B Z * ( w y  d)}e--O(d-Z) 
n = 2  

W 

- I: ~ n { w ( d - z ) D ~ ( w , d ) + [ i + w ( d - z ) ] D ~ * ( o , d ) } e - w ( d - Z ) .  (A 8b) 
n = 2  

(b )  The functions A 2 ( w )  and B2(o) 

( c )  Simplification of (2.33) 
The functions P* and B* are substituted from (2.29) into (2.33), where BZ is replaced 
by its integral transform given in (A 5 ) .  The resulting right-hand side of (2.33) consists 
of triple-integral expressions, of which two integrals can be performed analytically. 
The middle integral is evaluated first using the result given by Erd6lyi et al. (1954, 
vol. 2, p. 7): 

t s  1 
JO([S) ds = -sin t f .  

Jo - 5 
Then the improper inner integral is determined using the basic relations (Erddlyi et al. 
1954, vol. 1, p. 152) 

The resulting expressions for f * and g* are 

(A 13a) 
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where F, is the remaining puter integral given by 

at. 
2 1 sin (n arctan t/d) 

(t2 + d2)@ q w ,  d )  = ; jo sin wt 

Equations (A 13) and (A 14) provide the solutions for f *  and g* in terms of the 
unknown spherical coefficients B, and D,. Utilizing these results and the definitions 
off * and g* given by (2.31), one can determine the functions f and g using Hankel’s 
inversion formulae. One can also substitute thef* and g* functions directly in (2.22) 
to obtain the expression for the velocity field in the region x < d, in terms of the 
unknown coefficients B, and 0,. 

(A 15c) 

where 

Is,(t,d) = (d2+P)-tnsin (A 16a) 

The integrals k; in (A 15) can be evaluated analytically by making use of the basic 
result (ErdBlyi et al. 1954, vol. 1, p. 101) 

(A 17a) 
t ki l (R,  2, t )  = jj (1 - h), 

where h is a positive root of the algebraic equation 

(A 17b) 
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Hence i t  can be easily shown that 
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where 

kt(R,  X ,  t )  = - 

h 
k!(R, X ,  t )  = - a ' 

, 1 

(A 17c) 

(A i 7 a )  

(A 17e) 

a = [(t' - R2 - x')' + 4x2t2]*, (A 18) 

]a t ,  H"(R,x)  =I14[h- O U  ha + a8 

~ ' ( t ' -  3h2) 4hx2(t2 - h') 

(A 19a) 

(A 19b) 

with h, and a1 defined by (A 17b) and (A 18) respectively with t = 1. 
For the purpose of numerical integration of the definite integrals in (2.34) and 

H"(R,x) ,  the functions k! given by (A 17) and the integrand in (A 19b) should be 
determined for small values o f t  by L'Hospital's rule or from their Taylor approxi- 
mations. 
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